Achieve End-to-End Data Quality
Identify and resolve data quality issues at scale

The Solution
Quickstart with 40+ pre-defined metrics
Telmai uses machine learning to scan all your datasets and generate a set of health metrics for each including uniqueness, volume, distribution, pattern drifts, schema changes, and more. These metrics are automatically classified into Data Quality Key Indicators (KPIs) like accuracy, validity, freshness, completeness, and more.


ML and metadata driven metrics
Temai uses both the data values itself and the metadata to identify and predict your data quality issues. Telmai uses metadata to provide insights on volume, schema changes, and recent table updates while using machine learning to detect trends, outliers and drifts in actual data values. Together, these two techniques give you a full picture of your data quality.
Monitor complex data types
Gain an end-to-end visibility into your entire data pipeline regardless of the type, form, shape, frequency and volume of data in the pipeline. Telmai monitors data of all types - from data warehouses and analytic databases, to data lakes, semi-structured sources such as JSON, streaming data such as Kafka queues, pub-sub messages, and even data extracted from APIs.


Auto-remediation via API integration
Using Telmai’s REST APIs, you can automatically invoke a remediation flow. Telmai can also be integrated with pipeline and workflow orchestration systems such as Airflow to assert the data monitoring outcomes into your data pipelines. Possible workflow steps include: Reject bad data, and create a help desk ticket for remediation by upstream source; reject bad data, and relaunch the previous pipeline step; or accept bad data, label and remediate it in the future.
Start your data observability today
Get a demo from a solutions engineer in less than 24 hours